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Coalescence theory

FIGURE 3.15 Two completely 12 b EaS egs e
equivalent ways of illustrating

the coalescences in a gene tree.
On the left, the coalescent events
are represented as horizontal
lines, on the left they are repre-
sented as nodes. In any each
generation, if there are k alleles T, | E(T))=2N
present, the expected time back
to the next coalescence is given
by 4N/[k(1 - k)]. For example,
starting with five alleles, the
expected time back to the first
coalescence is 4N/[(5)(4)] =
IN/10:Note that the stuceessiverss = | eV = "o agREnss ~—
times get longer. When there are
only two alleles, the time back T, E(T;) = %’
to the final coalescence is 2N
generatons. | |  Aq----Y-—-—-—-—-

Present
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Bayesian Skyline Plot

Bayesian Coalescent Inference of Past Population Dynamics from

Molecular Sequences

A.J. Drummond, A. Rambaut, B. Shapiro, and O. G. Pybus
Department of Zoology, University of Oxford, Oxford, United Kingdom

Weintroduce the Bayestan skyline plot, anew method for esimating past population dynamics through time from a sample
of molecular sequences without dependence on a prespecified parametric model of demographic history. We descaribe a
Markov chain Monte Carlo sampling procedure that efficiently samples a vanant of the genemlized skyline plot, given
sequence data, and combines these plots to generate a posterior distribution of effective population size through time. We
apply the Bayesian skyline plot to simulated data sets and show that it correctly reconstructs demographic history under
canonical scenarios. Finally, we compare the Bayesian skyline plot model to previous coalescent approaches by analyzing
two real data sets (hepatitis C virus in Egypt and mitochondnal DNA of Beringian bison) that have been previously inves-
tigated using alternative coalescent methods. In the bison analysis, we detect a severe but previously unrecognized botile-
neck, estimated to have occurmed 10,000 radiocarbon years ago, which coincides with both the carhiest undisputed record of

large numbers of humans in Alaska and the megafaunal extinetions in North America at the beginning of the Holocene,
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Fia. 1.—{a) A genealogy of five individuals sampled contemporaneously (top) together with its associated classic (middle) and generalized (bottor)
skyline plots. (b) A genealogy of five individuals sampled at three different times (top) along with its associated classic (middle) and generalized (bottom)
skyline plots. In the classic skyline plots, the changes in effective population size coincide with coal escent events, resulting in a stepwise function with »

2 change points and n

size coincide with some, but not necessarily all, coalescent events. The resulting stepwise function has m

population sizes.

1 change points (1 < m < n

1 population sizes, where n is the number of sampled individuals. In the generalized skyline plot, changes in effective population
1) and m
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Fig. 2 —Performance of the Bayvesian skyline plot on simu lated data.
Time is measured inunits of mutations per site. The true demographic his-
tories are shown as thick dotted lines, the median estimates are shown as
thick solid lines, and the %5% HPD limits are shown by the gray areas
bounded by thin dashed lines. (a) The Bavesian skyline plot (m = 12)
calculated from a set of sequences that wemre simulated under a model
of constant population size. () The Bayesian skyline plot (m = 12) calcu-
lated from a simulatad data set for which the true demographic history was
exponential growth (see text for details)h
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pairwise sequential Markovian coalescent (PSMC) model
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Method ¥ Ty 2 (kya) T} 3 7.1 (kya) F 5 Data Comment
Marth et al. (2004) AFS N/A 76 64 0.005 42 = 33k sites
Adams and Hudson (2004)  coal-sim  N/A 30 N/A N/A Seattle SNPs  Size reduction followed by exponential
growth.
Schaflner et al. (2005) coal-sim  52.5 52.5/30  N/A 0.085/0.067 3988  sites, T'wosharp bottlenecks mixed with reduced
genotyping population size (Figure S6)
Plagnol and Wall (2006) coal-sim 130 60 N/A 0.20/0.24 34 x 3.2Mb,  0.20 for model without infrogression; 0.24
EGP with introgression; F calculated from the
ms command line
Liu et al. (2006) 56.1 N/A N/A N/A
Garrigan et al. (2007) coal-sim  39.5 39.5 N/A N/A 431 = 16kb Quoting the divergence time between Do-
from M\ XY  gon and Mongolian. Reduction followed by
exponential growth.
Fagundes et al. (2007) coal-sim  51.1 51.1 N/A N/A 50 = 25kb  Reduction followed by exponential growth.
from auto.
Keinan et al. (2007) AFS N/A 23+2 N/A 0.18£0.01  HapMap and  Oune-bottleneck model. Bottleneck at 32+3
Perlegen for European.
Cox et al. (2008) coal-gim 27.7 N/A N/A N/A 100 = 100kb  Quoting the divergence time between Han
from X and Biaka. Divergence time estimed on
chrX with migration modeled.
Wall et al. (2009) coal-sim 20 3041 30 0.27/0.33 58 x 5.3Mb,  0.27 without introgression; .33 with intro-
EGP gression; bottleneck duration fixed af lkya;
Eu-Af diverged at 120kya.
Gutenkunst et al. (2009) diffusion 140 140/21.2 N/A N/A EGP, non- Two bottlenecks at the Af-Eu/As diver

coding only

gence and at the Eu-As divergence.

Table $2: Inferred out-of-Africa event in current literature. Underlined numbers are fixed (not inferred) in the model. ' ‘coal-sim’ denotes the category of methods
that use a coalescent sirmilator to fit the observed data; ‘AFS’ denotes methods that explicitly compute the likelihood of an allele frequency spectrum given a
piecewise constant population size history; ‘diffusion’ denotes the diffusion appraximation on the joint allele frequency spectrum. ® The divergence time of African

and non-African populations. If the time is in unit of generations in the literature, it is scaled to years under the assumption of 10

-8

mutation per site per year

(equivalent to g = 2.5 % 107" and ¢ = 25). * Time of the start of the bottleneck or population size reduction. ? Time of the end of the bottleneck. ® Inbreeding

coefficient. F' can only be calculated when the model explicitly models the bottleneck.

Li&Durbin 2010



Multiple sequential Markovian coalescent (MSMC) model

Inferring human population size and separation history

from multiple genome sequences
a Recombination

Stephan Schiffels & Richard Durbin
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Figure 3 Inference of population size from whole-
genome sequences. (a) Population size estimates
from four haplotypes (two phased individuals)

from each of nine populations. The dashed line
was generated from a reduced data set of only the
Mative American components of the MXL genomes.
Estimates from two haplatypes for CEL and YRI
are shown for comparison as dotted lines.

M, Maorthern. (b} Population size estimates from
eight haplotypes (four phased individuals) from the
=ame populations as in a but excluding MXL and
MEKK. In contrast to estimates with four haplotypes,
estimates are more recent. For comparison, we
show the result from four haplotypes for CEL,

CHE and YRI as dotted lines.

Figure 4 Genetic separation between
population pairs. (a) Relative cross
coalescence rates in and out of Africa.
African—non-African pairs are shown in red,
and pairs within Africa are shown in purple.
(b) Relative cross coalescence rates between
populations outside Africa. European—East
Asian pairs are shown in blue, Asian-MXL
pairs are shown in green, and other
non-African pairs are shown in other

colors, as indicated. The pairs that include
MXL are masked to include only the putative
Mative American compenents. In a and b,
the most recent population separations

are inferred from eight haplotypes, that is,
four haplotypes from each population, and
corresponding pairs are indicated by a
cross. (e) Comparison of the African-non-
African split with simulations of clean splits.
We simulated three scenarios, at split times
50,000, 100,000 and 150,000 years ago.
The comparison demonstrates that the history
of relative cross coalescence rate between
African and non-African ancestors

is incompatible with a clean split model

and suggests it progressively decreased from
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gene flow and bottleneck are shown along a logarithmic axis of time.




[ ENEFR YA X IDFER

BERERYAX:

U LREFZRELEHEEDEEY (X
=REISELRFERLTOSERE

# RR DEAZR

\4

EEFAF A XDES) B R EIR &AL EfRRE



Allele frequency spectrum (AFS)

SNPDIEEH =YD HIFFERE

Positive selection or population growth
causes an excess of rare variants
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Figure 6.7: Frequency spectrum of segregating sites under
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&
_%‘x different types of selection.
S Two types of deviation from the site frequency spectrum
expected in a constant size neutrally evolving population (smooth
- . line) are shown. One spectrum shows rare alleles (those at low

~ -~ I
SNP(-ID H'é/’ﬁigg? U )l/a)'f‘EJE population frequency) being more prevalent than expected, and

(k20 Ah) the other shows intermediate alleles being over-represented.

Both scenarios can be caused by either selection or demographic
factors.
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The Allele Frequency Spectrum in Genome-Wide Human Variation
Data Reveals Signals of Differential Demographic History in
Three Large World Populations

10,000; b

N ry. N 000, T,
3000, N; = 2000, 7: = 500, N; = 10,000. (3 and
b) Sample size n

0

Gabor T. Marth,' Eva Czabarka, Janos Murvai and Stephen T. Sherry

National Center for Biotechnology Information, National Library of Medicine, National Institutes
of Health, Bethesda, Maryland 20894

Manuscript received April 15, 2003
Accepted for publication September 4, 2003

Results of fitting multi-epoch models of allele frequency spectrum to population-specific
observed allele frequency data

Ma rth et aI . 2004 : : past Model Model Resulting pairwise 0 Improvement over
A structure parameters (units of 1074 In P(datajmodel) lower-epoch model
N; ‘ T; (=) a. European data
One epoch N; = 10,000 8.00 —55.98 —
Two epoch N, = 10,000 8.74 —38.11 21In Ak = 35.74
N, T, N, = 140,000 P< 107
(77 = 2,000) Highly significant
Three epoch N; = 10,000 7.88 —23.72 21In A = 2878
epoch N, T, N, = 2,000 P< 107!
. (T, = 500) Highly significant
duration N, = 20,000
- 3 present (T, = 3,000)
effective population size b. Asian data
One epoch N, = 10,000 8.00 —74.26 —
Ficure I.—Example of a three-epoch, piecewise constant, Two epoch N, = 10,000 8.63 —31.95 2 In A = 84.62
bottleneck-shaped population history profile. The ancestral Ny = 50,000 P<107"
effective population size (N;) is followed by an instant reduc- (77 = 2,000) Highly significant
R ton of effective size (Ny). The duration of this epoch is T; Three epoch N; = 10,000 8.24 —26.39 2In k= 1112
E(W) = 4pNi generations. This is followed by a stepwise increase of effective N, = 3,000 P =0.0039
! i population size to N;, T} generations before the present. (T, = 600) Significant
N, = 25,000
[ (T, = 3,200)
M—1 . r ol gyl
+ E 4|J..M [ n ]') c. African-American data
1 i i One epoch N, = 10,000 8.00 —197.86 —
Two epoch N, = 10,000 9.20 —28.69 21In A = 338.34
N, = 18,000 P< 107
.y \ n —" (T, = 7,500) Highly significant
" in — k& (e Hi—1) Three epoch N, = 10,000 10.29 —926.72 21In A = 3.94
> 1 ,E € lgf =1 -1 . N, = 16,000 P=0.1395
k=2| VT L= (=1 —4jj—-1) (T = 15,000) Not significant
N = 26,000

(1) (T; = 2,400)




SMC++

Terhost et al. 2017
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Figure 1. The effect of phasing error
The true population size history 1sindicated by a bold black line, while colored lines

indicate inferred hstones for ten simulations each with sample size 1= 4. For MEMC,
switch error was introduced at the rate of 094, 1%, or 5%%, indicated in parenthesisin the
legend. SMC++ does not require phased data and 1ts results are insensitive to phasing errors.
With phasing error, MEMC estimnates can be off by orders of magmtude in the recent past. In
the absence of phasing error, the accuracy of MEMC 15 comparable to that of SMC++, with
SMC+H+ producing higher resolution in the recent past.
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McEvoy et al. 2011

Human population dispersal “Out of Africa”
. . . oye . & ¥ * FIN*
estimated from linkage disequilibrium and allele 423 Srion 284 ten 161 Danish 202 Swedih 149 Finish

. United Kingdom Netherlands Denmark Sweden Finland
frequencies of SNPs cHp
88 Italians 85 Chinese
Tuscany Colorado, USA

Brian P. McEvoy,L4 Joseph E. Powell,'#> Michael E. Goddard,?> and Peter M. Visscher'
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Genetic and fossil evidence supports a single, recent (<200,000 yr) origin of modern Homo sapiens in Africa, followed by ASW ARG Ty JPT

later population divergence and dispersal across the globe (the “Out of Africa” model). However, there is less agreement 49 African- - NS “ | ’ 86 Japanese
on the exact nature of this migration event and dispersal of populations relative to one another. We use the empirically Americans ) e Tokyo
observed genetic correlation structure (or linkage disequilibrium) between 242,000 genome-wide single nucleotide SouthwestUSA E 5 (@ GIH
polymorphisms (SNPs) in 17 global populations to reconstruct two key parameters of human evolution: effective pop- MEX T o o 0-_/3@ Guajarati-Indians
ulation size (N) and population divergence times (T). A linkage disequilibrium (LD)-based approach allows changes in Mexican Ancestry - 7 2 8 v a Texas, USA
human population size to be traced over time and reveals a substantial reduction in N. accompanying the “Out of Africa” California, USA Ny T, ) X A A _'?,

exodus as well as the dramatic re-expansion of non-Africans as they spread across the globe. Secondly, two parallel estimates / ‘ . 143MMK;§sa|
of population divergence times provide clear evidence of population dispersal patterns “Out of Africa” and subsequent YRI )2 % 5 T YR Kinyawa, Kenya
dispersal of proto-European and proto-East Asian populations. Estimates of divergence times between European—African and 113 Yorubans

East Asian—African populations are inconsistent with its simplest manifestation: a single dispersal from the continent followed badan, Nigeria

\ AUS*
\448 European-

by a split into Western and Eastern Eurasian branches. Rather, population divergence times are consistent with substantial LWK
ancient gene flow to the proto-European population after its divergence with proto-East Asians, suggesting distinct, early 90 Luhya \‘ S . Australians
dispersals of modern H. sapiens from Africa. We use simulated genetic polymorphism data to demonstrate the validity of our ebuye, Kenya " Australia
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conclusions against alternative population demographic scenarios s. codes. and sample sizes. The samplina location is indicated in italics. GenomEUtwin populations are marked *; otherwise
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Figure 2. Spatial and temporal variation in N, estimates. N, was calculated from LD observations in each of 50 recombination distance classes for each
population. Note the change in the time axis scale at 20 KYA. The underlying LD structure upon which these N, estimates are based can be seen in
Supplemental Figure 5.
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anure 9.16: Geographlcal distribution of (he major mtDNA clade;

Each major clade (haplogroup) is assigned a color reflecting its position in the phyloqenv (left), and its frequency in population samples from
broad geographical regions is shown in the pie charts. Note the most basal haplogroups (L) in Africa and the contrast between the
frequencies of M (and subclades) compared to N (and subcl: ades) in southern Asia compared with more northern parts of Asia and Europe.

Color figure kindly sponsored by Oxford Ancestors Ltd
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Figure 9.18: Geographical distribution of the major Y-chromosomal DNA clades.

Each major clade (haplogroup) is assigned a color reflecting its position in the phylogeny (left), and its frequency in population samples from
broad geographical regions is shown in the pie charts. The basal haplogroups A and B are largely confined to Africa, and there is a broad
distinction between East Asia and the rest of Asia and Europe. Data kindly supplied by Peter Underhill, and based on Underhill et al. (2001)
Colour figure kindly sponsored by Oxford Ancestors Ltd
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Figure 7.9: Combining data from multiple orthologous loci to resolve the gorilla—chimpanzee—human trichotomy.

The number (100) next to the human—chimpanzee clade indicates percentage bootstrap support. H, Human; C, chimpanzee; G, gorilla;
0, orangutan. Data are from Chen and Li (2001).
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Figure 2 A neighbor-joining tree of individual similarities, based on 60 STR polymorphisms’2, 100 Alu
insertion polymorphisms2! and 30 restriction site polymorphisms’3. The percentage of shared alleles
was calculated for all possible pairs of individuals, and a neighbor-joining tree was formulated using the
PHYLIP software package’#. African individuals are shown in blue, European individuals in green and
Asian individuals in orange.
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MCMC algorithm (with admixture): The following
algorithm may be used to sample from Pr(Z, P, Q|X).

ALGORITHM 2: Starting with initial values 7% for 7 (by
drawing 7% at random using (3) for example), iterate the
following steps form = 1, 2, . . ..

Step 1. Sample P, O fram Pr(P, Q|X, Z=1).
Step 2. Sample 7 from Pr(Z1X, P™, 0'™).
Step 3. Update o using a Metropalis-Hastings step. &

«©
o

06

04

Z: populations of origin of the individuals

P: allele frequencies in all populations

Q: admixture proportions for each individuals
X: observed genotypes
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Fig. 2. Fine-scale population structure principal component analyses in two geographic regions, 3?33 § fé- é?
using all autosomal SNPs. (A) Europe. (B) The Middle East. @ $
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A B, | fig. 1. Individual ancestry and population dendrogram. (A) Regional ancestry inferred with the
“r = = = z < rappe program at K = 7 (13) and plotted with the Distruct program (31). Each individual is
1 g g - epresented by a vertical line partitioned into colored segments whose lengths correspond to his/

E . 1er ancestry coefficients in up to seven inferred ancestral groups. Population labels were added
10 e g 3 »nly after each individual’s ancestry had been estimated; they were used to order the samples in
s I dlotting. (B) Maximum likelihood tree of 51 populations. Branches are colored according to
-] . N * Snddl - .
i 2 ‘ontinentg/regions. * indicates the root of the tree, also where the chimpanzee branch is located.
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Fig. 3. Analysis of molecular variance and ,c'gu mluw wluw mluw m;ou

correlation between haplotype heterozygosity
and geographic distance. (A) Partitioning of
genetic variance into three components (18): Within-Population (WP), Among-Population-Within-Region
(APWG), and Among-Region (AG), by using autosomal SNPs, microsatellite markers, and ChrX SNPs,
respectively. (B) SNP haplotype heterozygosity versus geographic distances from Addis Ababa (AA),
Ethiopia. The linear regression slope is indicated along with the Pearson correlation r.
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Mapping Human Genetic Diversity in Asia
The HUGO Pan-Asian SNP Consortium*t

Asia harbors substantial cultural and linguistic diversity, but the geographic structure of

genetic variation across the continent remains enigmatic. Here we report a large-scale survey of
autosomal variation from a broad geographic sample of Asian human populations. Our results
show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography.
Most populations show relatedness within ethnic'linguistic groups, despite prevalent gene flow
among populations. More than $0% of East Asian (EA) haplotypes could be found in either
Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with
haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were
found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic
source of EA populations.

HUGO Pan-Asian SNP

Consortium 2009
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Fig. 1. Maximum-likelihood tree of 75 populations. A hypothetical most-
recent common ancestor (MRCA) composed of ancestral alleles as inferred
from the genotypes of one gorilla and 21 chimpanzees was used to root the
tree. Branches with bootstrap values less than 50% were condensed.
Population identification numbers (IDs), sample collection locations with
latitudes and longitudes, ethnicities, language spoken, and size of pop-
ulation samples are shown in the table adjacent to each branch in the tree.
Linguistic groups are indicated with colors as shown in the legend. All

population IDs except the four HapMap samples are denoted by four
characters. The first two letters indicate the country where the samples
were collected or (in the case of Affymetrix) genotyped, according to the
following convention: AX, Affymetrix; CN, China; ID, Indonesia; IN, India;
1P, Japan; KR, Korea; MY, Malaysia; P, the Philippines; SG, Singapore; TH,
Thailand; and TW, Taiwan. The last two letters are unique IDs for the
population. To the right of the table, an averaged graph of results from
STRUCTURE is shown for K = 14.
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B. Covariance matrix for tree in A.

A.Example tree
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C.Example graph D. Covariance matrix for graph in C.
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Figure 1. Simple examples. A An example tree. B. The covariance matrix implied by the tree structure in A. Note that the covariance here is with
respect to the allele frequency at the root, and that each entry / pify C.An example graph. The
migration edge is colored red. Parental populations for population 3 are labeled ¥ and Z; see the main text for details. D. The cowariance matrix
implied by the graph in C: again, each entry has been divided by x(1  x]. The migration terms are in red, and the non-migration terms are in blue.
doi:10.1371/journal pgen.1002967.9001

A ours
Neandertal
MbutiPygmy
Takobygry
BantusouthAfrica
Mandenka

Yoruba

b
BantuRenya

Karitiana
Surul
Colombian

10s.e.

I I I I I 1
0.00 0.04 0.08

Drift parameter

B
e
ongs,
MbutiPygimy
s.akg%‘fg.y& i .

34.8SE

A

3 [
terich
lialjan
ian

55

'69;’5:"5‘?}?5 ——I
Paleyinian  ESE—
e

3

hi
Rﬁ B I .—34.8 SE

MbutiPygry

BiakaP

TreeMix

Neandertal
Denisova

MbutiPygmy
BiakaPygmy
BantuSouthAfrica

—oruba
BantuRenya———

Migration
weight
05 T Colombian .
\ e Karitiana
0 r
H
10s.e.
[ T T T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
Drift parameter

Figure 4. Inferred human tree with mixture events. Plotted is the structure of the graph inferred by TreeMix for human populations, allowing
ten migration events. Migration arrows are colored according to their weight. Horizontal branch lengths are proportional to the amount of genetic
drift that has occurred on the branch. The scale bar shows ten times the average standard error of the entries in the sample covariance matrix (W).
The residual fit from this graph is shown in Figure S9. Admixture from Neandertals to non-African populations is only apparent when considering
subsets of the data (see Discussion and Figure $15).
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Simulation study

Coalescent simulation (/msms)
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Phylogenetic analysis (Splits Tree4)
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Principal component analysis (EIGENSTRAT)
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Admixture graph
See Reich et al. 2009 & 2012, Paterson 2012
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Reconstructing Indian population history

David Reich"?*, Kumarasamy Thangaraj’*, Nick Patterson”*, Alkes L. Price™** & Lalji Singh®

India has been underrepresented in genome-wide surveys of human variation. We analyse 25 diverse groups in India to
provide strong evidence for two ancient populations, genetically divergent, that are ancestral to most Indians today. One, the
‘Ancestral North Indians’' (ANI), is genetically close to Middle Easterners, Central Asians, and Europeans, whereas the other,
the ‘Ancestral South Indians' (ASI), is as distinct from ANI and East Asians as they are from each other. By introducing
methods that can estimate ancestry without accurate ancestral populations, we show that ANI ancestry ranges from 39-71%
in most Indian groups, and is higher in traditionally upper caste and Indo-European speakers. Groups with only ASI ancestry
may no longer exist in mainland India. However, the indi; And. 1 Islanders are unique in being ASl-related groups
without ANI ancestry. Allele frequency differences between groups in India are larger than in Europe, reflecting strong
founder effects whose signatures have been maintained for thousands of years owing to endogamy. We therefore predict
that there will be an excess of recessive diseases in India, which should be possible to screen and map genetically.
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Figure 4 | A model relating the history of Indian and non-Indian groups.
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Admixture graph
See Reich et al. 2009 & 2012, Paterson 2012
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Efficient Moment-Based Inference of Admixture Parameters
and Sources of Gene Flow

Mark Lipson,”" Po-Ru Loh,”" Alex Levin," David Reich,** Nick Patterson,” and Bonnie Berger*™?
lDe|::‘artment of Mathematics and Computer Science and Antificial Intelligence Laboratory, Massachusetts Insttute of Technology

*Broad Institute, Cambridge, Massachusetts
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MixMapper

Phase 1: Unadmixed scaffold Phase 2: Admixture fitting

tree construction

=

+ Unadmixed population filtering

(f -statistics > Q) » Two-way mixture fitting
s 2 % = Unadmixed subset selection » Three-way mixture fitting
[J17F  (ranking by -additivity) » Gonversion to drift units
Sl » Scaffold tree building
{neighbor joining) Baotstrap resampling

Fic. 1. MixMapper workflow. MixMapper takes as input an array of SNP alls annotated with the population to which each individual belongs. The
method then proceeds in two phases, first building a tree of (approximately) unadmixed populations and then attempting to fit the remaining
populations as admixtures. In the first phase, MixMapper produces a ranking of possible unadmixed trees in order of deviation from fradditivity, based
on this list, the user selects a tree to use asa scaffold. In the second phase, MicMapper tries to fit remaining populations as two- or three-way mixtures
between branches of the unadmixed tree. In each cse, MikMapper produces an ensemble of predictions via bootstrap resampling, enabling confidence
estimation for inferred results.

A Branchiloc (Pre-Split / Total) A popd B popd G popd
—
‘_' o ~ ot FopS Pops Pops
PR ! FinalDrift1B .
—— AdmixedPop ) T AdmixedPop1 : Y pops
pod (o Parent! + - Parent2) MixedDrifttA ; o« ; popé
— i ‘I - : i
MixedDrift = oda+fb+c i MixedDrift2
— —— AdmixedPop2 popd L pepd popd
Branch2Loc . Migration
(Pre-Split / Total) _ poge — pop2 popi2 walgrg.s
Branch3Loc
(Pre-Split / Total)
L— popl — popi popl

Fic. 2. Schematic of mixture parameters fit by MixMapper. (A) A simple two-way admixture. MixMapper infers four parameters when fitting a given
population as an admixture. It finds the optimal pair of branches between which to place the admixture and reports the following Branchiloc and
Branch2Loc are the points at which the mixing populations split from these branches (given as pre-split lengrh/total branch length); o is the proportion
of ancestry from Branch1 ( = 1—a i the proportion from Branch2); and MixedDrift & the linear combination of drift lengths o”a + b +c.
(B) A threeway mixture: here AdmixedPop2 s modeled as an admixture between AdmixedPop1 and Branch3. There are now four additional
parameters; three are analogous to the above, namely, Branch3loc @3, and MixedDrift2 The remaining degree of freedom is the position of the
splic along the AdmixedPop1 branch, which divides MixedDrift into MixedDrift1A and FinalDrift1B.

Lipson et al. 2013

0

Fi. 3. Results with simulated data. (A-C) First simulated admixture tree with one admixed population. Shown are (A) the true phylogeny,
(B) MixMapper results, and (C) TreeMix results. (D-F) Second simulated admixture tree, wich four admixed populations. Shown are (D) the true
phylogeny, (E) MixMapper results, and (F) TreeMix results. In (A) and (D), dotted lines indicate instantaneous admixtures, whereas arrows denote
continuous (unidirectional) gene flow over 40 generations. Both MixMapper and TreeMix infer point admixtures, depicted with dotted lines in (B) and
(E) and colored arrows in (C) and (F). In (B) and (), the terminal drift edges shown for admixed populations represent half the total mixed drift. Full
inferred parameters from MixMapper are given in supplementary table 51, Supplementary Material online
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FiG. 4. Aggregate phylogenetic trees of HGDP populations with and without admixture. (A) A simple neighbor-joining tree on the 30 populations for
which MixMapper produced high-confidence results. This tree is analogous to the one given by (Li et al. 2008, fig. 1B), and the topology is very similar.
(B) Results from MixMapper. The populations appear in roughly the same order, but the majority are inferred to be admixed, as represented by dashed
lines (cf. Pickrell and Pritchard 2012 and supplementary fig. 54, Supplementary Material online). Note that drift units are not additive, so branch lengths
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should be interpreted individually.
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Fic. 5. Inferred andent admixture in Europe. (A) Detail of the inferred
ancestral admixture for Sardinians (other European populations are
similar). One mixing population splits from the unadmixed tree along
the common ancestral branch of Native Americans ("Ancient Northern
Eurasian”) and the other along the common ancestral branch of all non-
Afrians ("Andent Western Eurasian”). Median parameter values are
shown; 95% bootstrap confidence intervals can be found in mble 1.
The branch lengehs g, b, and ¢ are confounded, so we show a plausible
combination. (B) Map showing a sketch of possible directions of move-
ment of ancestral populations. Colored arrows comrespond to hbeled

branches in (A).
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Sensitive Detection of Chromosomal Segments of
Distinct Ancestry in Admixed Populations

Alkes L. Price™*3, Arti Tandon®*, Nick Patterson®, Kathleen C. Barnes®, Nicholas Rafaels®, Ingo
Ruczinski®, Terri H. Beaty®, Rasika Mathias’, David Reich®***, Simon Myers®®°*
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Figure 1. Schematic of the Markov model we use for ancestry inference. The black low

Generslions sinos admisbee

Affcan anoesiry proporion

Figure 5. Correlation between ancestry proportion and estimated time since admixture in African Americans. Each grey point shows
an estimate of the time . since admixture corresponding to one of 935 analysed African American individuals {Materials and Methods). The red line
shows sliding averages of 20 individuals, binned according to increasing African ancestry proportions.

doi:10.1371/joumal pgen. 1000519.g005
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Figure 7. Local ancestry estimates produced by HAPMIX for three real Mozabite individuals on chromosome 1. The plots are
constructed as for Figure 5, and show HAPMIX estimates of the number of sub-Saharan African copies across chromosome 1 for three individuals
chosen for having different genome-wide African ancestries: 20% (top plot), 29% (middle plot) and 75% (bottom plot). The top plot looks similar to
Figure 5, while the much longer segments seen in the two individuals with more African ancestry indicate more recent admixture with sub-Saharan

Africans.
doi:10.1371/iournal.paen.1000519.a007

Price et al. 2009
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The History of African Gene Flow into Southern
Europeans, Levantines, and Jews

Priya Moorjani'?*, Nick Patterson?, Joel N. Hirschhorn™*?, Alon Keinan®, Li Hao”, Gil Atzmon®, Edward
Burns® Harry Ostrer®, Alkes L. Price’, David Reich™*7*

Rolloff test
2SNPREI D EEAR T =EREDEEZEZETEADIT

Ancestral Ancestral
Africans Europeans
San YRI (AA) (AE) CEU

X= West Eurasians

Papuans

Figure 2. Estimation of African ancestry using f, Ancestry Estimation. f, Ancestry Estimation computes the quantity ((San-Papuan).(X-CEU)/
((San-Papuan).(YRI-CEU)); where X = any West Eurasian population. The denominator is proportional to the genetic drift m that occurred in the
ancestors of West or East Africans since their divergence from San but prior to their divergence from West Eurasians (intersection of red and orange
lines). The numerator is proportion to p*(Ancestral Africans-YR) + (1-p)"(Ancestral Europeans-CEU). Since the branches connecting (San, Papuan) and
(CEU, X) do not overlap each other, the quantity (1-p)*(X-CEU) = 0 and hence the numerator s expected to equal pm. Thus, the ratio of the numerator
and denominator is expected to equal p (Ancestral African mixture proportion). This figure is adapted from reference (21), where we firstdeveloped f;
Ancestry Estimation, and where we reported computer simulations demonstrating its robustness.
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Figure 3. Testing for LD due to African admixture in West Eurasians. To generate these plots, we used the ROLLOFF software to calculate the
LD between all pairs of markers in each population, weighted by their frequency difference between YRl and CEU to make the statistic sensitive to
admixture LD. We plot the correlation as a function of genetic distance for Portuguese, Russians, Sephardic Greek Jews and Palestinians. We do not
show inter-SNP intervals of <0.5cM since we have found that at this distance admixture LD begins to be confounded by background LD, and so
inferences are not reliable (exponential curve fitting does not include inter-SNP intervals at this scale).

doi:10.1371/journal pgen.1001373.g003

Moorjani et al. 2011
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Inferring Admixture Histories of Human Populations

Using Linkage Disequilibrium

Po-Ru Loh,** Mark Lipson,*' Nick Patterson,” Priya Moorjani,”* Joseph K. Pickrell,*
David Reich,"** and Bonnie Berger*-"*

*Department of Mathematics and Computer Science and Artificial Inteligence Laboratory, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, tBroad Institute, Cambridge, Massachusetts 02142, and *Department of Genetics,

Harvard Medical School, Boston, Massachusetts 02115

Loh et al. 2011

Ai

c g A c B’
Figure 1 Notational diagram of phylogeny containing admixed popula-
tion and references. Population C & descended from an admixture be-
tween A and B to form C populations A" and 8 are present-day
references. In practice, we assume that postadmixture drift i negligible;
ie., the C-C" branch is extrermnely short and C* and C have identical allele
frequencies. The branch poirts of A" and £ from the A5 lineage are
marked A" and £8°; note that in a rooted phylogery, these need not be

most recent common ancestors (as in panel B; compare to panel A
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Figure 3 Weighted LD curves for
Mbut using San and Yoruba as
reference populations (A) and us-
ing Mbuti itself as one reference
and several different second
references (B), and analogous
curves for Biaka (C and D). Ge-
netic distances are discretized in-
to bins at 0.05 ¢M resolution.
Data for each curve are plotted
and fit starting from the corre-
sponding ALDER-computed LD
correlation thresholds. Different
amplitudes of one-reference
curves (B and D) imply different
phylogenetic positions of the
references relative to the true
mixing populations (i.e., different
split points X]'), suggesting
a sketch of a putative admixture
graph (E). Relative branch lengths
are qualitative, and the true root
is not necessarily as depicted.



Admixtools: Paterson et al. 2012

Ancient Admixture in Human History

Nick Patterson', Priya Moorjani?, Yontao Luo?, Swapan Mallick?, Nadin
Rohland?, Yiping Zhan?, Teri Genschoreck®. Teresa Webster®, and David Reich'-?

'Broad Institute of Harvard and MIT, Cambridge, MA 02142
’Department of Genetics, Harvard Medical School, Boston, MA 02115
3 Affymetrix, Inc., 3420 Central Expressway. Santa Clara, CA 95051

ADMIXTOOOLS version 3.0, 3/11/15
The package contains 6 programs:

convertf:
qp3Pop:

gpBound:

qpDstat:

gpF4Ratio:

rolloff:

programs for converting file formats.
This test can be used as a format test
of admixture with 3 populations.

This test can be used for estimating
bounds on the admixture proportions,
given 3 populations (2 reference and
one target).

This is a formal test of admixture with
4 populations.

This program computes the admixture
proportion by taking the ratio of two f4
tests.

This program can be used for dating
admixture events.

(@) fACA) =a+c+a2d+ (1-a)(e+g+f)

a¥(c+d+a) a(l-a)(c+a) (1-a)(a)(cta) (1-a)cte+frg+a)

(b)  f(CAB)=c+a2d + (1-afe - a(1-a)(g+)

(C) f4AED,C)=-ag [, ratio=

(1-a)(a)(c-g-f)

f(AE:D.C)

(1-a)y(c+e)

f4(A>E;D$B)
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Likelihood-based estimation of
population demography from molecular data
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Isolation with Migration Models for More Than Two

Populations
Jody Hey*
Department of Genetics, Rutgers University
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Abstract

A method for studying the divergence of multiple closely related populations is described and assessed. The approach of
Hey and Nielsen (2007, Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in
population genetics. Proc Natl Acad Sa USA. 104:2785-2790) for fitting an isolation-with-migration model was extended
to the case of multiple populations with a known phylogeny. Analysis of simulated data sets reveals the kinds of history
that are accessible with a multipopulation analysis. Necessarily, processes associated with older time periods in a phylogeny
are more difficult to estimate; and histories with high levels of gene flow are particularly difficult with more than wo
populations. However, for histories with modest levels of gene flow, or for very large data sets, it is possible to study large

complex divergence problems that involve multiple closely related populations or species.

Key words: divergence population genetics, coalescent, gene flow, speciation.
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Table 4. Estimates of Demographic Quantities
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On the Number of New World Founders:
A Population Genetic Portrait

of the Peopling of the Americas
Hey 2005
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The founding of New World populations by Asian peoples is the focus of considerable archaeclogical and g

research, and there persist important questions on when and how these events occurred. Genetic data offer great
potential for the study of human population history, but there are significant challenges in discerning distinct
demographic processes. A new method for the study of diverging populati was applied to q ions on the
founding and history of Amerind-speaking Native American populations. The model permits estimation of founding
population sizes, ch inp lation size, time of population formation, and gene flow. Analyses of data from nine
loci are consistent W|th the general portrait that has emerged from archaeological and other kinds of evidence. The
estimated effective size of the founding population for the New World is fewer than 80 individuals, approximately 1%
of the effective size of the estimated ancestral Asian population. By adding a splitting parameter to population
divergence models it becomes possible to develop detailed portraits of human demographic history. Analyses of Asian
and New World data support a model of a recent founding of the New World by a population of quite small effective

size. B
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Approximate Bayesian Computation (ABC)
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Figure 1. Frequency spectrum gallery. (A) Qualitative effects of modeled neutral genetic forces on ¢(x;.x,.7), the density of alleles at relative
frequencies x; and x» in populations 1 and 2. (B) For the spectra shown, an equilibrium population of effective size N, diverges into two populations
2N 47 generations ago. Populations 1 and 2 have effective sizes v; N4, and v, N 4, respectively. Migration is symmetric at m = M /(2N 4) per generation,
and 0= 1000. (C) The AFS at == 0. Each entry is colored by the logarithm of the number of sites in it, according to the scale shown. (D) The AFS at
various times for various demographic parameters, on the same scale as (B). (E) Comparison between coalescent- and diffusion-based estimates of
the likelihood £ of data generated under the model (A). Coalescent-based estimates of the likelihood, each of which took approximately 7.0 seconds,
are represented in the histogram. The result from our diffusion approach, which took 2.0 seconds, is represented by the red line. For accuracy
comparison, the yellow line indicates the likelihood inferred from 10% coalescent simulations.

doi:10.1371/journal.pgen.1000695.q001
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Figure 3. Settlement of the New World analysis. As in Figure 2, (A) is the data, (B) is a schematic of the model we fit, (C) compares the data and
model AFS, and (D) compares LD. (E) The fit of our model to the real data is not atypical of fits to simulated data. (F) The improvement in real data fit
upon including CHB-MXL migration (red line) is very typical of the improvement in fits to simulated data without CHB-MXL migration. Thus we have
no evidence for CHB-MXL migration after divergence.
doi:10.1371/journal.pgen.1000695.g003
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Figure 2. Out of Africa analysis. (A) AFS for the YRI, CEU, and CHB populations. The color scale is as in (C). (B) lllustration of the model we fit, with
the 14 free parameters labeled. (C) Marginal spectra for each pair of populations. The top row is the data, and the second is the maximum-likelihood
model. The third row shows the Anscombe residuals [61] between model and data. Red or blue residuals indicate that the model predicts too many
or too few alleles in a given cell, respectively. (D) The observed decay of linkage disequilibrium (black lines) is qualitatively well-matched by our
simulated data sets (colored lines). (E) Goodness-of-fit tests based on the likelihood £ and Pearson’s X2 statistic both indicate that our model is a
reasonable, though incomplete description of the data. In both plots, the red line results from fitting the real data and the histogram from fits to
simulated data. Poorer fits lie to the right (lower £ and higher X?). (F) The improvement in likelihood from including contemporary migration in the
real data fit (red line) is much greater than expected from fits to simulated data generated without contemporary migration (histogram). This
indicates that the data contain a strong signal of contemporary migration.

doi:10.1371/journal.pgen.1000695.9002
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Human diversity
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Human biological diversity 1s likely to be caused
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Sequencing of 50 Human Exomes
Reveals Adaptation to High Altitude
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Fig. 1. Two-dimensional unfolded site frequency spectrum for SNPs in Tibetan (x axis) and Han (y axis) 0 10 20 30 40 50 60
population samples. The number of SNPs detected is color-coded according to the logarithmic scale Number of SNPs per gene

plotted on the right. Arrows indicate a pair of intronic SNPs from the EPASI gene that show strongly

elevated derived allele frequendies in the Tibetan sample compared with the Han sample. Fig. 2. Population-specific allele frequency change. (A) The distribution of Fsr-based PBS statistics for the

Tibetan branches, according to the number of variable sites in each gene. Outlier genes are indicated in
red. (B) The signal of selection on EPAS1: Genomic average F-based branch lengths for Tibetan (T), Han

EPAS 1 = HIFZA (H), and Danish (D) branches (left) and branch lengths for EPAS1, indicating substantial differentiation

_— along the Tibetan lineage (right).
ERRFEERF .
hypoxia-inducible factor: HIF Yi et al. 2010



Lewontin-Krakauer test

Hudson’s FST estimator is
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The mean of Fg over loci can be calculated
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Lewontin and Krakauer (1973)
pointed out that (K — 1)Fsr;/Fsr has a x2
distribution with K-1 degrees of freedom
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Tajima’s D test
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Signatures of positive selection

new mutation
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Composite likelihood ratio (CLR) test
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Composite likelihood ratio testiZ&k 34/ LIEFE

Table 2. Candidate Genes for Variation in Human Skin Pigmentation and Evidence of Population-Specific Selective Sweeps

Gene Chr Paosition (Mb] CLR p Value, African-American CLR p Value, European-American CLR p Value, Chinese

POMC 2 25.36 0654 (0.433) 0295 0150

MITF 3 G983 0.181 0254 {0.182) QLG58 (0.627)

KT 4 5548 0828 [0.813) 0618 030

F2ril 5 7621 0808 0E7FD 0933

MATP 5 3401 0.976 0.00014 0658

DTNEP 14 & 1570 0.913 [(0.416) 0544 {0.599) 0037

TYRPI® 9 1269 0652 0326 0421

TR 11 BBGE 0.746 10.725) 0145 0.117) 0221 (0.209)

SILV 12 54,64 0,092 Q050 0.0o07

KTLG 12 BT A4 0.014 0.000007 0.00002

oCT 13 9281 0812 [0.796) 0335 0305

OCAZ * 15 2577 0.400 [0.046) 0.140 0.055) 0.020 (0.0023)

TRPM 1 15 29.04 0.992 0.707 0.6E9) 0.00004 [0.00002) —
SLC24A5° 5 4614 0287 0.0008 0.BGE :
MYD5A* 15 5043 0382 0492 0.454] 0398 —
RAB27A 5 53.23 0.BB5 (0.814) 0.0025 0.00020 T
MCIR 16 B9.73 0.274 0556 0405 -
MC2R 18 1388 0839 0125 0.0005 & S
ATRN 20 35.19 0613 0508 [D.582) 0.00020 (0.00006h == \
ASIP 20 3357 0518 0749 0375

Reported p values are from the genomic window with a midpoint nearest the midpoint of the gene.

Values in parentheses indicate the minimum pwvalue of windows with a center between the start and stop codon of the gene, which ks reported only if it is different from the midpoint p
wvalue Bold typeface indicates p values with nominal significance below 5%

“Genes previously identified as experiencing partial selective sweeps in the European population [15].

dol:10.1371/ jowrnal jpg en 030000 HH02
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Williamson et al. 2007 PLoS Genet




Detecting recent positive selection
in the human genome from
haplotype structure
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Figure 2 Cors haplotype frequency and redative EHH of G&PDand TNFSFS

a, b, Haplotype bifurcation diagrams (see Methods) for each core haplolype at GEFD (a)
and TANFSFS b in pooled African populations demonstrate that GEFDMCHB and TANFSFS
CH4 boxed or labelled in red) have long-range homozygasity that is unusual given their
frequency. ¢, d, The BHH at varying distances from the core region on each cors haplotyps
at GEPD f¢) and TNFSFS i) demonstrates that GEPD-CHB and TMFSFS-CHA have
perssient, high BHH valuss. e, f, At the most distant SNP from G6°0 §g) and TNFSFS )
core regions, the relative BHH plotted against the core haplotype frequency is presented

Distance from core region (kb)

and compared with the distrbulion of simulated core haplotypes fon the basis of

simutation of 5,000 data sets represented by grey dots and given with 958, ¥5th and
50th percentiles). The dbseved non-selected core haplotypesin our data are represented
by black diamonds. g, b, We calculated the statistical significance of the departure of the
observed data from the simulated distribufion at each distance: from the core. GEPL-CHE
(@) and TNFSF5-CHY fh) demonstrate increasing desiation from a model of neutra drift af

Sabeti et al. 2002



Extended haplotype homozygosity (EHH)
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(a) East Asians, rs6060371 (in SPAG4), p; = 0.742, 2.3 ¢cM/Mb
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Figure 6. Signals of Selection for Three Candidate Selection Regions Discussed in the Text

The columns show (left) scatter plots of negative iHS scores, (center) haplotype plots, and (right) decay of haplotype homozygosity. In each case the
core SNP for the center and right-hand plots was chosen as a SNP with high negative iHS score (starred in the scatter plots); the allele marked in red is
derived. For each signal, values are listed for the derived allele frequency (pz) and the local deCode recombination rate estimate.
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GO enrichment

Table 2. p-Values for Enrichment of GO Categories among
Genes Showing Evidence for Partial Sweeps

GO Nesting GO Category ASN CEU YRI
211 Chemosensory perception - Q0006 QU000
21-1-1 Olfaction - QL0006 QUD008
22-2 Gametogenesis Q008 - -
22-2-2 Spermatogenesis and motility Q.02 003 -
22-3 Fertilzation Q004 Q003 -

-1 Cther carbohydrate metabolism 0.0002 - -

2] Electron transport - 0.0002 -
4-13 Chromatin packaging/remodeling <20.0001 o -
16-1-1 MHC-l-mediated immunity - <0.0001 Q2
3-2 Steroid metabolism - - <0.0001
3-5 Lipid and fatty acid binding 0.001 - -
442 mRNA transcription initiation - Q002 -

513 Protein modification QD02 - -

7-5 Vitamin/cofactor transport 0.002 - -

9 Phosphate metabolism 0.002 0.03 -
134 Peroxsome transport - - Q.002

Al prvalues are one-sided, testing for ennichment of @teqories in each populbtion; “=" indicates that the

pwalue B =005

Bodfaced et indimtes p-values that are significant after a conservatres Bonfenoni comedion formaulbiple

Exting

DO 100137 1/ jpumal pheo. 002007 2 1002
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A Practical Genome Scan for Population-Specific Strong
Selective Sweeps That Have Reached Fixation

Ryosuke Kimura'2*, Akihito Fujimoto’, Katsushi Tokunaga®, Jun Ohashi'

1 Department of Human Genetics, Graduate School of Medidine, The University of Tokyo, Tokyo, Japan, 2 Japan Society for the Promotion of Science,

Tokyo, Japan

Phenotypic divergences between modern human populations have developed as a result of genetic adaptation to local
‘environments over the past 100,000 years. To identify genes involved in population-specific phenotypes, it is necessary to
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Genome-wide detection and characterization of
positive selection in human populations

Pardis C. Sabeti'*, Patrick Varilly'*, Ben Fry’, Jason Lohmueller', Elizabeth Hostetter', Chris Cotsapas'?,
Xiaohui Xie', Elizabeth H. Byrne', Steven A.McCarroll'?, Rachelle Gaudet’, Stephen F. Schaffner’, Eric 5. Lander"**¢

& The International HapMap Consortiumt

With the advent of dense maps of human genetic variation, it
is mow possible to detect positive natural selection across the
human genome. Here we report an analysis of over 3million
polymorphisms from the International HapMap Project Phase 2
(HapMap2)'. We used ‘longrange haplotype’ methods, which
were developed to identify alleles segregating in a population that
have undergone recent selection®, and we also developed new
methods that are based on cross-population comparisons to dis-
cover alleles that have swept to near-fixation within a population.
The analysis reveals more than 300 strong candidate regions.
Focusing on the strongest 22 regions, we develop a heuristic
for scrutinizing these regions to identify candidate targets
of selection. In a complementary analysis, we identify 26 non-
synonymous, coding, single nucleotide polymorphisms showing
regional evidence of positive selection. Fxamination of these
candidates highlights three cases in which two genes in a common
biological process have apparently undergone positive selection
in the same population: LARGE and DMD, both related to
infection by the Lassa virus’, in West Africs; SLC2445 and
SLC45A2, both involved in skin pigmentation®®, in Europe; and
EDARand EDAZR, both involved in development of hair follicles®,
in Asia.

few al ive alleles in the
Supplementary Tables 1-2).

We next developed, evaluated and applied a new test, Cross
Population Extended Haplotype Homozogysity (XP-EHH), to detect
selective sweeps in which the sdected allele has approached or
achieved fixation in one population but remains polymorphic in
the human population as a whole (Metheds, and Supplementary
Fig.2and Supplementary Tables 3-6). Related methods have recently
also been described ™2,

Our analysis of recent positive selection, using the three methods,
reveals more than 300 candidate regions'(Supplementary Fig. 3 and
Supplementary Table 7), 22 of which are above a threshold such that
nosimilar events were found in 10 Gb of simulated neutrally evolving
sequence (Methods). We focused on these 22 strongest signals
(Table 1), which include two well-established cases, SLC2445 and
LCT**", and 20 other regions with signals of similar strength.

The challenge is to sift through genetic variation in the candidate
regions to identify the variants that were the targets of selection. Our
candidate regions are large (mean length, 815 kb; maximum length,
3.5Mb) and often contain multiple genes (median, 4; maximum, 15).
A typical region harbours ~400-4,000 common SNPs (minor allele
frequency >5%), of which roughly three-quarters are represented in

Fig. 2 and

population (Supp

Kimura et al. 2007
Tang et al. 2007
Sabeti et al. 2007
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Genome-wide detection and characterization of
positive selection in human populations Bl—7YJLDEHH%
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’
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Pardis C. Sabeti'*, Patrick Varilly'*, Ben Fry’, Jason Lohmueller', Elizabeth Hostetter’, Chris Cotsapas'?,
Xiaohui Xie', Elizabeth H. Byrne], Steven A. McCarroll'?, Rachelle Gaudet’, Stephen F. Schaffner', Eric S. Lander™*™*°
& The International HapMap Consortiumt

Table 1| The twenty-two strongest candidates for natural selection

Region Chrposition Selected population Long Haplotype Test  Size (Mb}  Tota SMPs with  Subset of Subset of Subset of SNPs  Genes at or near SMPs that
(MEB,HGLIT} Long Haplotype  SMNPs that SMPs that that fulfil fulfil all three criteria
Signal fulfil criteria fulfil oriteria  criteria 1, 2
1 1and2 and 3

1 chrl: 166 CHE + JFT LEH, iHS 0.4 92 39 30 2 BLZFI, SLCISAZ
2 chr2:726 CHE + IPT XP-EHH 0.8 732 250 0 0
3 chr2:108.7 CHE + IPT LEH, iH5 XP-EHH 10 G972 265 7 1 EDAR
4 chr2136.1 CEU LEH, iH5 XP-EHH 24 1213 282 24 3 RABIGAPI, RZHDMI, LCT
5 chr2l77.9 CEU,CHE + JFT LEH, iH5 X¥P-EHH 12 1388 399 i) 9 PDEI 1A
& chrd:3359 CELUYEIL CHB + JFT LRH, iHS 17 413 181 33 ]
7 chrd:42 CHE + JFT LEH, iHS, XP-EHH 03 249 94 65 6 SLC3049
8 chrd:15% CHE + IPT LEH, iH5 XP-EHH 0.3 233 &7 34 1
9 chrl(:3 CEU LEH, iH5, XP-EHH 0.3 179 63 1e 1
10 chrl(:22.7 CEU, CHE + JPT ¥P-EHH 0.3 254 93 0 0
11 chrll:55.7 CHE+IPT LEH, HS, XP-EHH 0.4 735 221 5 2 PCOHIS
1z chrl2:78.3 YRl LEH, iHS 0.8 151 91 25 0
13 chrl5:46.4 CEU XP-EHH 0.6 Be7 233 5 1 SLC24A5
14 chrl5:61.8 CHE + IPT XP-EHH 0.2 252 73 40 & HERCI
15 chrlé:sd.3 CHE + IPT XP-EHH 0.4 484 137 2 0
16 chrle:74.3 CHE + IFT, ¥Rl LEH, iHS 0.6 55 35 2B 3 CHSTS, ADATI, KARS
17 chrl?:53.3 CHE + JFT XP-EHH 0.2 143 41 0 ]
18 chrl7:56.4 CEU XP-EHH 0.4 280 o8 26 3 BCASZE
15 chr19:43.5 YRl LEH, iH5 XP-EHH 0.3 83 30 0 0
20 chr22:32.5 Rl LEH 0.4 318 188 35 3 LARGE
21 chr23:35.1 YRl LEH, iH5 0.6 50 35 25 0
22 chr23:63.5 Rl LEH, iH5 15 13 3 1 0

Total SMPs 1674 2166 2,858 480 41

Twenty-two regions werne identified at a high threshold for significance (Methods), based onthe LRH, iHS and/or XP-EHH test. Within these regions, we examined SNP s with the best evidence of
baing the target of selection an the basis of having a long haplotype signal, and by fulfilling three criteria: (1) being a high-frequency derived allele; (2) being differentiated betwesn populatio ns and
commaon anly inthe selected population; and (2} bengidentified as functionalby current anno tation. Several candidate polymiorphisms arise from the analysis indu ding well-known LCT and SLC24A5

(ref. 2}, as well as intriguing new candidates. .
Sabeti et al 2007
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Hard Sweep & Soft Sweep
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Empirical distribution vs Simulated distribution
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The most famous examples of genes
under strong local positive selection

Population Gene Chr Function
East Asia ABCC11 16 Ear wax type
ADH1B 20 Alcohol metabolism
EDAR 2 Ectodermal development
Europe SLC24A5 15 Skin pigmentation
SLC45A2 5 Skin pigmentation
LCT 2 Lactose tolerance
Out-of-Africa OCA2 15 Skin pigmentation

KITLG 12 Skin pigmentation
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Figure 1. Climate variables used for the analysis. (A) Maps show the distributions of summer and winter climate variables: maximum summer .E— Ea £ 34
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Figure 3. Global variation in allele frequencies for SNPs with strong signals with climate. Two NS SNPs from the worldwide analysis: (A) A
SNP (rs3782489) in keratin 77 (KRT77), is strongly correlated with summer solar radiation, and (B) a SNP (s2075756) in the thyroid receptor interacting
protein (TRIPE) is strongly correlated with absolute latitude. Two SNPs from the population subset analysis: (C) A SNP (rs4558836) in CORIN has a
signal in the AEA population subset with winter minimum temperature, but not in the AWE subset, and (D) a NS SNP (rs5743810) in TLRG has a signal
2 0 1 1 in the AWE population subset with winter solar radiation, but not in the AEA subset. Two SNPs that are associated with autoimmune disease from
H a n COC k et a I . GWAS: (E) A SNP (rs2313132) upstream of PCOHIS that is assodated with SLE is strongly comelated with summer solar radiation, and (F) a SNP
(rs6074022) upstream of CD40 that is associated with multiple sclerosis is strongly correlated with minimum winter temperature. For each plot, gray
points represent individual SNPs and colored lines represent fitted lines (obtained using the Im function in R) for each region. The ranges of the
climate variable values for each region are shown at the bottom of the coresponding segment of the plot.
doi:10.1371/journal pgen.1001375.9003
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Additive genetic variances assuming infinite number of subpopulations

o = (1+ F)o?
oay = (1 —F)o?
O-A%B = O-/%T - /%W = 2F0§

Using phenotypic variances,

aohy o
= h?: heritabili

Osr acpg+2h2apy, ty

K ng
6I§W=§I%W=%z( ];I)E(xk]_fk

k=1 e j=1

K 1 <

Gpp = K —1 Spp = ﬁ;(fk — x)?

K: the number of subpopulations
n,: the number of samples from k

(Wright 1951; Lande 1992; Spitze 1993)

Under the assumption that the
dominance and epistatic effects and the
environmental factors are the same
between subpopulations (a = 1)

A2
Opp

0pg + 2h“65y,

Psr =
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Figure 5. Visual representation of outlier analysis at the regional and individual population level for (A) height, (B) skin
pigmentation, (C) body mass index, (D) type 2 diab (E) Crohn's di and (F) ulc ive colitis. For each geographic region we
plot the expectation of the regional average, given the observed values in the rest of the dataset as a grey dashed line. The true regional average is
plotted as a solid bar, with darkness and thickness proportional to the regional Z score. For each population we plot the observed value as a colored
cirde, with cirde size proportional to the population specific Z score. For example, in (A), one can see that estimated genetic height is systematically
lower than expected across Africa. Similarly, estimated genetic height is significantly higher (lower) in the French (Sardinian) population than
expected, given the values observed for all other populations in the dataset.

doi:10.1371/journal pgen.100441 29005

Berg&Coop 2014
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Fig. 1.—Neighbor-Joining trees based on (g) average Fgr values

among the 6 populations typed on the Affymetrix 10K WGSA chip
and locus-specific Fgr values at (h) ASIP A8818G, (c) OCA2 A355G,
(d) TYR A192C, (&) MATP C374G, and (f) SLC24A5 A111G. Populations
are abbreviated as follows: WA, West African; SA, South Asian; NA, Na-
tive American; EU, European; EA, East Asian; IM, Island Melanesian.

Norton et al. 2007
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Colour key

-Sharp-beaked ground finches C. pafﬁdus Z C. psittacula_P
I Al other ground finches
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Cocos finch C. parvulus_Z
-Warbler finches _
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Extended Data Figure 3 | Network tree for the Darwin’s finches on thebasis  Species Multiply: The Radiation of Darwin’s Finches by Peter R. Grant &
of all autosomal sites. Taxa that showed deviations from classical taxonomy  B. Rosemary Grant. Copyright © 2008 Princeton University Press. Reprinted
are underscored. Finch heads are reproduced from ref. 5. How and Why by permission.
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Figure 14.10: Deviations of admixture
proportions due to natural selection on
HLA alleles.

An excess of African and deficiency of
European ancestry at the HLA locus (white
bar) on chromosome 6. [Adapted from
Tang H et al. (2007) Am. J. Hum. Genet. 81,
626. With permission from Elsevier; and
Oleksyk TK et al. (2010) Philos. Trans. R. Soc.
Lond. B Biol. Sci. 365, 185. With permission
from Royal Society Publishing.]



Introgression between modern and archaic humans

Denisovans
Modern humans Neanderthals

D.l. Denisova
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Prufer et al. 2014



Evolutionary history of genus Homo

Asia Oceania

1
Africa :
1

— 30 kya

— 40 kya

— 80 kya

H. Horesigy, o

— 200 kya

— 600 kya

— 800 kya

— 1.800 kya

H. ergaster

1
1 Current Biology

Lalueza-Fox and Gilbert, Current Biology 2011



Genomic regions derived from the Neanderthals
are different among individuals

Neanderthal

Modern human

Every non-African modern human have 1-4% of genome sequences
derived from the Neanderthals.



Genomic regions derived from the Neanderthals
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doi:10.1038/nature12961

The genomic landscape of Neanderthal ancestry in

present-day humans

Sriram Sankararaman’+?, Swapan Mallick", Michael Dannemann®, Kay Priifer®, Janet Kelso®, Svante Paibo?, Nick Patterson’?

& David Reich">*

Neanderthal
Test | @
African | G

Neanderthal

Test

African

Neandertha| EE—————

Test |

~0.05 cM

African |

Extended Data Figure 1 | Three features used in the Conditional Random
Field for predicting Neanderthal ancestry. Top (feature 1), patterns of
variation at a single SNP. Sites at which a panel of sub-Saharan-African
individuals carry the ancestral allele and in which the sequenced Neanderthal
and the test haplotype carry the derived allele are likely to be derived from
Neanderthal gene flow. Middle (feature 2), haplotype divergence patterns.
Genomic in which the divergence of the test haplotype to the

sequenced Neanderthal is low, whereas the divergence to a panel of sub-
Saharan-African individuals is high, are likely to be introgressed. Bottom
(feature 3), we searched for segments that have a length consistent with what is

Sankararaman et al. 2014
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expected from Neanderthal-t dern-h gene flow appr ly 2,000
generations ago, corresponding to a size of about 0.05 cM = (100 M per
Morgan)/(2,000 generations).

and For each ¢ we plot the
framon of alleles conhdcnt]y mfen'od to be of Neanderthal origin (probability
>90%) in lapping 1-Mb windows in Europ (red) and in east

Asians (green). Black bars denote the coordinates of the centromeres. We plot
traces in non-overlapping 10-Mb windows that pass filters. We label 10-Mb-
scale windows that are deficient in Neanderthal ancestry (e1-¢9 (e, European),
al-al7 (a, Asian)) (see Supplementary Information section 8 for details).



Genomic reglons derived from the Neanderthals
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Fig. 2. Genomic distribution of surviving Neandertal lineages. (A)
Neandertal lineages identified in East Asians (ASN, red) and Europeans (EUR,
blue). Gray shading denotes regions that did not pass filtering criteria (10);
black circles represent centromeres. (B) Visual genotype illustrations of in-
trogressed sequences identified in the BNC2 and POUZF3 genes. Rows denote
individuals, columns indicate variant sites, and rectangles are colored according
to genotype (red, predicted Neandertal variant that matches the allele present
in the Neandertal reference genome; blue, predicted Neandertal variant that
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does not match the allele present in the Neandertal reference genome; black,
other variants). Introgressed variants that overlap a PhastCons conserved element,
DNasel hypersensitive site (DHS), or putative enhancer elements are shown as
hoxes (10). (C) Odds of finding an introgressed lineage on each chromosomal arm
calculated from a logistic regression model (Z0). Odds ratios (ORs) are expressed
using chromosome 1p as the baseline level. Horizontal bars represent 95% Cls.
(D) Relation between the OR and the number of fixed differences per megabase
between humans and Neandertals. p, Spearman’s rank correlation coefficient.
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Vernot et al. 2014



Adaptive introgression
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Figure 2 | Example coals il logy of uniquely shared mutations. Several DNA fragments from twe

medern populations (pink and blue chromesomes) are sequenced. A diploid sequence is also obtained from an extinct
archaic population fyellow chromosomes) that split from the population tree more anciently than the twe modern
populations split from each other. Uniquely shared mutations (red stars) occur in the archaic population but are passed on
to the ancestors of the blue modern population via admixture (dashed ling). These are then sweprt to high frequency by
selection, producing a shallow local coalescent genealogy. This process results in sites with high-frequency derived alleles
inthe blue samples that are present in the archaic sample but not in the pink samples from the other modern population.
Mutations in the genealogy that are not uniquely shared are shown as green stars.

Racimo et al. 2015

Table 1 | Candidates for adaptive introgression

Introgressed haplotype

HLA-A, HLA-B and HLA-C

HLA-DPEB1

STATZ (haplotype N)

STATZ (haplotype D)

0A51

OAS gene cluster

HYALZ (3p21.31)=
MC1R™

SLC16A11 and SLC16A13
DMD

EPAS1 [REF. 57)

Various regions identified
via 5* that contain

genes involved in the
integumentary system

Various regions identified
via CRF that contain genes
involved in keratin filament,
sugar metabalism, muscle
contraction and cocyte
meiosis

Various regions identified
via HMM

Closest putative
archaic source
population

Meanderthal and
Denisovan

Meanderthal {7}, but
this was questioned in
REF. 73

Neanderthal

Denisovan (7)

Denisovan, but
extremely ancient
coalescence with human
reference suggests that
the direct source was a
different archaic group

MNeanderthal
MNeanderthal
Neanderthal
MNeanderthal
MNeanderthal

Denisovan

MNeanderthal

Meanderthal

Meanderthal and
Denisovan

Modern populations
showing evidence
of introgression

Europeans, East Asians
and Melanesians

Eurcpeans ()

Non-Africans

Melanesians

Melanesians

Mon-Africans
East Asians
Mon-Africans
Mative Americans
Mon-Africans

East Asians or Tibetans
only

Europeans and East
Asians

Europeans and East
Asians

Europeans, East Asians
and Melanesians

Evidence for positive selection and
selection tests performed

Extreme allelic and haplotypic diversity
in the HLA region, which is indicative of
balancing selection®®

Ne formal test of neutrality performed®,
but a phylegenetic analysis suggests that
the haplotype is not introgressed™

One-tailed test for elevated frequency of
diagnestic SNP inintrogressed haplotype
based on empirical distribution of SNP
frequencies™

Neo formal test of neutrality performed. but
haplotype is only present in Papuans at a

low frequency*

= No evidence for positive selectionin
REF. 75

= Evidence for positive selection in REF. 44

= Suggestive signal of balancing selection
based on genetic differentiation of
haplotypes across continents™

iH5%, EHHY and CM3%!

Tajima's 0%, Fu and Li's test™, and iH5*
Genotype—phenotype association™
Mo tests performed™®

= High population differentiation®
= Genotype—phenotype association™
= High archaic haplotype frequency™

= High F; between Europeans and Asians
in variants identified to be introgressed
(local adaptation)®

= Introgressed haplotypes with
frequencies in both Europeans and
Asians that are higher than expected
under neutrality (shared adaptation)™

Windows in which the population
frequency of the Neanderthal genetic
material is too high to be explained by
neutral drift

Me claims about selecticn and no formal
tests of neutrality performed™*

Most likely
population in
which selection
occurred

Europeans,
East Asians and
Melanesians

Melanesians

East Asians
Taiwanese(?)
Mative Americans (7)

Tibetans
Europeans and East

Asians

Europeans and East
Asians

CM35, compaosite of multiple signals: CRF, conditional random field; DMD. dystrophin; EHH, extended haplotype homozygosity: EPAS1, endothelial PAS domain
protein 1; HLA, human leukocyte antigen; HMM, hidden Markov model; HYALZ, hyaluronoglucosaminidaze 2; iHS; integrated haplotype score; MCIR,

melanacortin 1 receptor; ©AS, 2°-5 -oligoadenylate synthetase; SLC. solute carriar; NP, single-nucleatide polymaorphism: STATZ, signal transducer and activator of
tranzeription 1. The table provides a summary of recent studies reperting adaptive introgression with & comparizon of the evidence provided in support of positive
selection acting on the introgressed regions. A question mark denotes that the source population, the receiving pepulation or the population in which selection
occurred remains unresolved and/or has cenflicting reports from different studies.
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for your attention




